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IV, PROPAGATION EQUATIONS FOR INTEGRATED ENERGY-MOMENTUM AND
.SPIN AND ORBITAL ANGULAR MOMENTA
1. - Imtroduction
Can one measure the non-metric parts of the connection which are
present in the metric-connection theories of gravity? More specifically,

might it be possible to experimentally measure the torsion field of a metric-

‘Cartan connection theory? To answer these gquestions, one needs to in-

vestigate the behavior of test bodies and fields in the presence of back-
ground metric and connection fields.

The behavior of electromagnetic fields and other gauge fields was disg-

~cussed in Section III.4 T showed that uhder the assumption of the standard

minimal coupling procedure, these fields will ignore the torsion and behave
as they do in a metricAtheory.

" In Sections 2 and 3 of this chapter, I (in collaboration with William

- Stoeger) derive the propagation equations of the energy-momentum and angular

‘momentum of a test body in the context of a metric-Cartan comnection theory

ﬁith dynamic torsion. The propagation equations show (Theorem IV.2 of
Section 3 and Corollariés IV.1, IV.3 and IV.5 of Section 4) that the torsiomn
couples to the elementary particle spin but not to the orbital angular
momentum. Specifically, in the energy-momentum propagation equation (IV.3.16),
the spin couples_to the Cartan curvature whiie the orbital angular momentum
couples to only the. Christoffel curvature. Further, the covariant derivative
of the spin couples to the defect temnsor. In the angular momentum propagation
equation (IV.3.17), the spin couples to the Cartan connection whereas the
ofbital angular momentum couples to only the Christoffel conneétioﬁ.
Consequéntly, if there is a torsion field, it cannot affect the pre-
cession of the Stanford gyroscope (Section 5a) but it can modify the pre-

cession of the angular momentum of a body with a net elementary particle

spin. Unfortunately, for most bodies with both spin and orbital angular

-
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momentum, such as a magnetized iron gyfoscope (Section 5b) or a neutron
star (Section 5c¢), the spinm is much smaller than the orbital angular

momentum. Hence, the coupling of the spin to the Cartan connection and

"curvature is usually negligible compared to the coupling of the orbital

angular momentum to the Christoffel connection and curvature.
Thus, the best way to search for torsion is to examine bodies with

a net elementary particle spin but no orbital angular momentum. However

leven a non—rotating magnetized iron sphere (Section 5d) would have to

have a radiué‘of lOAm in order to have a spin angular moméntum as large
as the orbital angular momentum of the Stanford gyroscope. Putting such
a large mass of iron into orbit ié beyond present technology but may be
possible in 50 years or so. Other systems with a net spin but no orbital
angﬁlar momeﬁtum aré mentioned in Section 5Se.

Our method of deriving the propagation equations proceeds as follows:
We first pick anrarbitrary worldline, X(t), to represent the motion of the
body and pick an arbitrary coordinate systeﬁ xa, centered on this worldliﬁe.
In this coordinate system, we write out the canonical energy-momentum con-

servation law,
+ £ A s (L

and the angular momentum conservation law,

vbSCdb = 2 pled], (2)

; , ' . o]
Then we integrate various moments of these equations over the x -level
surfaces. Finally, we solve the resulting equations for one propagation

equation for the integrated canonical energy-momentum,

p? - J % o, (3)
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and for a second propagation equation for both the integrated orbital

angular mowentum,

Lab‘= J (6x2 tbo a be £20y /:E-dBX, 4)
and the integrated spin angular momentum,

Sab - J Sabo VE d3x . : : (5)-

This method of deriving propagation equations is similar to that uged
by Mathisson [1937 ], Papapetrou [1951 ] and Dixon [1970a,b, 1973, 1974] in
the context of a metric theory of gravity. They derived propagation

equations for the integrated metric energy-momentum,

B - f *° /o'y, (6)

and the integrated metric angular-momentum,

PP - J (55> T°° - sx° 72°) /7§ a’x , N

starting from the metric energy-momentum conservation law,

v, 7 = 0. - | (8)
In Corollariesr Iv.2, IV,4, IV.6 and IV.7 and the diséussion in Section 4, |
L showlthat in ﬁhe absence of torsion, our prépagation equations correctly
reduce to the metric theory results 5f Mathisson, Papapetrou and Dixon.
These previous derivations of the mefric theory results did ﬁot allow for
the possibility that Lab and Sab might propagate differentlﬁ, since they
only considered the &otal 3ab (which eguals Lab + Sab to lowest order in

~

a
¢x ). Howaver, Corollaries IV.4, IV.6 and IV.7 show that in a metric theory,
ab :

- L and $°7 do in faet propagate identically.
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In the presence of both torsion and spin, the conservation law {8) is
no longer correct, Instead, one should use both of the conservation laws
(1) and (2)., Trautman {1972c¢] and Hehl [1971] have also derived propagation
equations in the presence of torsion, but their method differs from ours.
They also start from the congervation laws (1) and (2), but they do not
c.  —a _ab ab- . : - '
define P, L% and §°° as the integrals (3), (4), and (5). Imnstead they

assume the energy-momentum tensor and spin tensor have the form,

S )

§#7¢ = g% ©, ' ‘ (10)

and substifute- these equations into the conservatiénllaws.< I see no
reason-for assuming (9) and (10). In faqt, this assﬁﬁption implies that
one is dealing with the restricted case when Lab = 0. 1In that case, our
propagation equations redqce {Corollary IV.5 of Séctiqn 4) to those found
by Trautman and Hehl;

| I wish to emphasize sevéral points about the general propagation
equations (IV.3.16) and (IV.3.17)_0f Theorem IV.2 in Section 3, First,
the propagation equations are only appropriate to metric-Cartan connection
theories ﬁith dynamics torsion. (The torsion is non-dynamic if it can be
specified as a strictly local function of the spin tensor. For example, the
ECSK theory has non-dynamic torsion.)_ The reason is that it would be
ineppropriate to treat a non-dynamic torsion field as a background field.

Second, we do not attempt either to find a preferred "

center of mass"
world line or to fin& equations of motion for this "center of.masé." Rather,
we find propagation equations for the.energy—momentum and angular momentum
along an arbitrary world-line (sufficiently close to the body) using an

arsitrary coordinate system centered on that world-line. 1In the metric -theory

caze, Madore [1966, 1969] and Beiglbock [1967] have constructed a
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"center of mass' world line and a generalized fermi coordinate system based
on that world line. In the metric—dartan connection theory case, the
Madore-Béiglbock constructionIStill works but becomes ambiguous since one
can use either Cartan or Christoffel geodesics and géneralized Fermi trans-
poft rule in the construction.

Third, I want to emphasize that the propagation equations follow

‘"directly from the conservation laws (1) and (2).. The conservation laws

in turn may be either (i) derived via Noether's theorem from a scalar
matter Lagrangian (Section III.5), or (ii) derived from a set of gravitaw
tional field equations with aﬁtomatic conservation laws (Section V.3e¢), or
{(iii) assumed ad hoc. In any case, except for requiring the gravitational
field equations to allow dynamic torsion and possibly to have automatic
conservation laws, the propagation equations are completely indeéendent of
the choice of gravitational field equations.

Finally, before pioceeding with the derivation of the propagation
equatiops, 1 point out that the general forﬁalism developed in Section 2 ié

appropriate to any type and number of charges describing the properties of .

‘the body. Thus it should be‘straightforward to generalize cur results to

find propation equations for (1) dilation current and hypermomentum in a

metric—connection theory with a non-metric-compatible connection, (2)

electric charge in a metric-connection theory with an electromagnetic field

and (3) gauge charges in a metric-connection theory with a Yang-Mills field.

NOTE: Throughout the remainder of this chapter, my conventions on
indices differ from the rest of the thesis, The conventions for this

chapter are explained at the beginning of the next section,
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2. General Framework
I first discuss notation and list my assumptions about the body

enc the nature of the surrounding spacetime, M. 1In this chapter, I need

.3=-cdimensional indices (lower case Latin) as well as 4-dimentional indices

{lower case Greek). I also use both orthonormal bases (indices with a
carot) and coordinate bases (indices without a carot). In performing

covariant derivatives, the orthenormal indices are corrected with the

"Cartan connection, while the coordinate indices are corrected with the

Christoffel connection. (In the two tangent space formalism, one would

regard the orthonormal bases as internal and the coordinate bases as

“external.)  Upper case Latin indices denote any collection of indices,

tangent or otherwise.
My first assumption is,

(i) The body is described by a collection of current tensors, JA?

From these, the current tensor densities are defined as

A . o

where § is the determinant of the coordinate components of the metric, guB'

I assume,

(i1) The currents satisfy differential "comservation" laws which ma
A y

be written as

o _ . ,
BOL}A = ‘?A’ (2)

where the 3A are "sources'" which may or may not be temsorial

o
A

The world tube of the body is defined to be the sﬁpport of the

and may or may not depend on the J

~currents; i.e.

supp & = cl{peM : }Au(p) # 0}. (3
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<f1 Here and hereafter, c¢f, {nt, and bd denoted the topological closure,
- interior and boundary of a subset of spacetime while 3 denotes the boundary
of a manifol& with boundary. T assume
(iii) There exists a closed set, W, and a coordinate system, xa, which
satisfy
{a) the world tube of the body is éontained in the interior of .
W, i.e.
supp § < int W3 | (4)
(b) the interior of W is dense in W, i.e.
W=cl int w; - (5)
' (c¢) W is the union of tiﬁelike curves;
(d) the coofdinafe system, xa, is defined on all of W;
(e) the coordinate basis, 3u, is oriented and time oriented,

KH' _ - i.e. the basis wvector, Bo, is everfwhere timelike and—fﬁture—
directed, while the basis vectors, Ba, are everywhere space-—
like and oriented;

(f) the % ~axis is entireiy contained in inf W;
(g) the x° coordinate is an affine parameter on the xguaxis;
(h) each level sﬁrface of x° within W is compact.
Most of thg following derivation works-for any choice of W and X,
A preferred choice may be specifiedvlater. For now I take W and x to be
fixed but arbitrary satisfying assumption (iii). (Notice that if W and %
were chosen to satisfy all of (iii) except (iii g) then it Would be possible

H

to rescale x° to make all of (iii) satisfied.)
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Assumptions (iii e, £, g) say that the x° —axis is a future-
directed, timelike curve,X(t)}, which has affine pérameter t = x° ¢ R and

is contained in Afnf W. The curve X(t) has coordinates

x°(t) = 2°(X(D) = t, X(r) = x> (X(t)) = 0,
or V
a _ L O ' L
X -(t.) =t3 . _ | o (6)

Since t is an affine parameter, the velocity vector,

=4 _
V(t) = dt 80 X(t)s (7)
is the unit tangent vector,
viv = s, f L (®

where the signature of the metric is (s, -5, -5, -5) and $ =+ 1, The

coordinate components of the velocity vector are

~a
x*(e) = &, | 9)
so that equation (8) yields,

Boolx(e) = ° (10)

Lowering the index, the coordinate components of the velocity l-~form are

v (6) = g vF (11)

aB = Bao X(t)’

In particular, v, = S . Notice that v, = is not necessarily zero

Eaol X(£)

] o . : o
tecause the X - axis is not assumed to be perpendicular to the x -level
. 4

surfaces.
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Aséumptions (ii1i e, h) say that each x°-level surface,
L(t) = {pe W: xo(p) =t} , (12)

1s spacelike and compact. -Assumption (iii a) says

§Aa =0 on BZ(tj . , (13)

" From the definitions (6) and (12), for each t,

X(t) e () . : (14)

In the following derivation I will often integrate various quantities

over 2(t). So I will abbreviate:

Jf - j £x) &x . (15)
z(t)

Such integrals will be regarded as functions of t defined alonmg X(t).

In particular, I will often need to compute the integral of a
4-dimensional divergence of the form fau(f;A“). By Stokes theorem

and equation (13), this may be written as

. ,
J3, 88, = fa,(£8,%) + [o_(£8,%

d o a .2
a—;ffan + faz £, 48,

|

= %? fngo - (16)

I will refer to equation (16) as "dropping the spatial divergences."
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1 aléo find it useful to introduce an orﬁhonormal basis édapted to
the foliation Z(t). Thus I assﬁme
(iv) Thereis an oéiented, time-oriented, orthonormal frame field,
eﬁ, defined on all of W such.that the basis vector, s is
everywhere orthogonal to 5(t) and future-directed and the
" basis vectofs eﬁ, are evéryﬁhere tangent to I(t) and oriented.
Given W and x satisfying (iii) it is always possible_to-find a frame.
. field, eﬁ,'satisfying (iv).. Most of.Fﬁe following derivatioﬁ works for
any cﬁoice of'eﬁ. A prefefred choice may be specified later. For now I
take eﬁ to be fixed but arbitrary satisfying assimption (iv).
Since Ba_and e are both baées for the tangent spacé-to z(t), one
expands

8. = €n é . . - an

If one then defines the lapse function, N, and the shift vector,

M=u 3 =" e,, . - (18)
a m*
by requiring
_ “30 =N ey + M, (19)

one finds that the bases are related by

w1}

N dxo,

2
1 M
ea—NB—-N Ba, 8

(20)

b
=}

m ., 0 il
e, = e. 3 M dx 4+ 86 _ dx ,
il a

@
i

and conversely,
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= ' o _1 6
30 Ne,+ Mﬁ Y dg. =N 8,
(21)
# a M8 f
3 =60 e, dx® = - 2+ 6% +e,2 6",
a a m N pui}
oo, . . a
where © q 18 the inverse matrix of e, .
fi b_ b 1 a _ M
i . % = Ga . | 8 2% = 8 a° (22)
From {17), (18) and (22), one finds
M = M el : M= ® e . (23
it} a
Notice that the 3-dimensional 1-form basis dual to e, is
3.i fi a ' _ !
8 =18 a dx (24)
rather than 8" from equation (20).
From the formulas
0 af g0 o B
= rS B 9 = A~ ~
8o = Mo ¥ o B> 4 nooen ey (25)
where
n = diag(s,~s,~s,-s), s = %1, (26)
one finds that the coordinate components of the metric are
- 2 fi
goo =35 N -~ 5 éﬁﬁ M@ M, .
_ B T -
g, =75 Saa O 6L, , (27)
g = -5 O, em Mﬁ Mb,

ao a = gab
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and the coordinate components of the inverse metric are

00
g.=s'l'§s
N
a.b ..
gab - < MM s Gmn eAa eﬁb , (28)
N2 fi il
a
ao M
- g =_s"'i'=
N

It is conventional to introduce the orthonormal projection operator

which has coordinate components

e, fi
Yoo B 6ﬁﬁ Mm LA
R ’
Yab = 8. B a ) b’ o (30)
Y= $aa o M.
ao a

Notice that y differs from the 3-dimensional metric,

3 3m . 3.8 a b
g & 68 = Yab-dx ® dx

Fal

m i a b
6ﬁﬁ 9 a 8 b dx~ & dx , (31)

which has a2 3-dimensional inverse,

_(
Il
C
©
>,
®
o
=%}
I
=
Q2
@
Q2

=8 ea ea D@3 . _ - (32)
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For the computations in this chapter,; I find it also useful to

introduce a coordinate projection operator
p=1-9 @d® =3 e dx° , (33)
o . a .
which has coordinate components
o .a ’ .
=8, & . o (34)

Along the curve, X(t), equations (7) and (9) say that the velocity
vector, v, coincides with the coordinate basis vector, 30. I also in-

troduce the normal vector,
with coordinate components, from (20)

w¥() =

2|

O M
§0 "N s . (36)
Lowering the index yields the coordinate components of the normal 1l-form,

u (£) = S N 52. . ' '(37)

Thus as a- l-form

~
o}

0
= § = s
The wvelocity, v, and normal vector, u, are related by
v(t) = N(t) u(e) + M(£). (39)

Along X(t), the coordinate projection operator is

=1-s%\1—veu, (40)
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Further, the zero components of tensors may be written

1,0
= § —
T N T u,

or
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(41)

as either

(42)

(43)

In the following derivation I will need to power series expand

various quantities within Z{t)} about X(t). Thus it is useful to

. . 04
introduce a new coordinate system, &x , on each surface, I(t), centered

at X(t). At p & IL{t),

-

-
a, o o
§x (p) = x (p) - X (), (44)
or
§z°(p) = 0, 8x°(p) = x (p). (45)
My final assumption is
(v) On each surface, I(t), the compoments of the orthomormal frames,
e”u, and the defect, AGSY , may be expanded about X(t) in a power
, .. a
series in 8x
x = X+ 85, (46)
! S i g (I
C'f “alx 8 % + 8x aB 8 alX +...0, (&7)
o= +8x% 5 2" oo, (48)

R
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Hence, the coordirmte components of the metric, gaB’ the Christoffel

) o , ' ~0L
connection, { Y}’ the Christoffel curvature, R

B Byd”’

o
the torsion

s Q By °
. . - ;
the Cartan connection, T By’ and the Cartan curvature,

~0
Rgyg o may

z1so be expanded.

I can now introduce the n-th integrated moments of the currents which

are defined as

o a B o o
looo n _ . 1 n 8
R, " —J §x 7 ... Ox .}A
' n o, 8. S B
- [enehy g, 49
. A
j=1 :

for n > 0. These are symmetric in the indices a

ree O and zero if an
1 n’ ] ¥

of the indices o "'-an are zero. Certain moments have additional names.

1

The integrated charges are

(o]

o
QK -J‘j ’ ‘ (50)
and' the n-th integrated momerits of the chargé are
al...an

Ggeestt O n aj o
QA = KA = J (j£1 8x )}A .

(51)

The ihtegrated moments of the currents and charges are to be re-
i . . o
garded as tensors which depend on the choice of coordinates, x, are

defined only along the curve X, and are specified in the coordimnate basis,

~

CE The goal of this chapter is te find equations of motion for the in-
tegrated charge moments which describe how these quantities change along
the curve ¥X(t). The technique is to integrate over I(t) all possible

moments of the differential conservation laws (2) and to attempt to solve
’ Cloewoll

. , i d 1 n
the resulting equations for EEQA

O;llooa S

A . The crucial equation in this procedure follows from

while eliminating the other (spatial)
components of K

the identity proved in the following theorem.
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Theorem IV.I1:

For any integer n > 0,

d n aj o nooa, n aj o

rr J (.F 8x )§A_ + -E v [ (-H §x )gA
i=1 i=1 j=1
#i

n n o o n o, 8
= 3 J( nLoosx g T+ I (n sx ¥ys 9,7,  (52)
. .- . BYA ,
i=1+“ j=1 _ j=1
#i

Proof':

The proof proceeds by induction ot n. For n = 0, {(52) becomes

4 o _ B _
which follows by dropping the spatial divergence.
Forn > 1, let N = {1, ..., n} and if i e N, let N, = N - {i].
Similarly, if S is any subset of N and if i & S, let Si =5 - {i}.
Assume that if § is a proper subset of N, then

o

a, . . o, )
4 (1 6xNE°+ =z vo |l (n sx9)°
dt . A . i . A
jes ieS jes,
i
: o, My o, ’B
=z | (n sxhyg T+ | (m sz 4P, (54)
. . A . BYA
ic$S JSSi jes
o,
Multiply (54) by I xJ and sum over all proper subsets S of N:
jeN-5

(Note: if ieS then N_S=Ni_si')




S

o, d . Q.
ro(n x% ~—-J (n sx 9y 4°

SIN  jeN-5 de jes A
ai o, f. 0. o
+ £ L v (T x ) j( T 6 J)gA
S;N ies JeNi-Si ‘ - jes,
' 6, oL o,
= I I (m X J)J (n ex gt
S;N ie$ JeNi-—Si jes;
Gj ' Uj B
' . 55
+ z (T X J (0 8x )333A (55)

S;N jeN-S je8

On the. other hand, there is the identity

aj 8 aj- oy ujv 8
3 x)g"1= ¢ (I x-)8 + (0 x7)3
8 jeN A ieN jENi A jeN 39A
(56}

Integrate (56) over Z(t) and drop a spatial divergence:

dt ieN. jeNi jeN

. o, o, 67N

Substitute x ¥ = X 7 + éx 3, using
a, @, o,

T x3= 1 (n x3(n &y, (58) .

jeN SN jeN-8 jes
o. o o,

T oz = I (1 X (nm sx . (59)

jSNi TcNi JsNi-T jeT

g...... (I[ aj) 0_): I aj 0'.‘-'i“_!_ I aja
R (n xg, 1 xhag
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B .

o,
and the fact that X J is constant on the surface I(t). The result is:
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d o, V [+ 29 o
r o lon XJ)J(H 6XJ),;?A]
SeN jeN-S €S :

., . O'.i
= T T (I XJ)J(H 5x3)(gA
ieN TCNi jaNi—T jeT

. o, - B
+ I (x XJ)J(H 5x3)aB§A : (60)

5N jeN-8 jes

. Note, the summation I by

may be replaced by I
ieN T=Ni

I where S = TV{i}
SeN ieS§

and T = Si' Make this replacement in (60). Also, on the left hand side of

(60), perform the time derivative using (9) and replace the dﬁmmy index S
' by T in one term:

LT @
r(n x% e J (I &x J)ﬁA
SeN jeN-5 jes

[+

s o, o.
+ T I v (= XJ)I.(H 6x 9) 4,°
T<N 1ieN-T jeNi—T jeT

a

_ oL : o, i
=& z (1 'XJ)J(H axj)gA_
SeN ieS jeN,-S, jes,
. 1 1 i

Q. o, 8
+ T (T XJ)f(n‘ axJ)aBCQA

(61)
SeN jeN-§ jes
Note, the summation I L may be .replaced by I I where § =TV {i}
TeN ieN-T

SN 1ieS

and T = Si' Thus the second term on the left becomes

a

s o o,
0T v oo(1n xJ)J(n st)O‘IAC’. (62)
SeN. ieS§ " jeN,~-S, jes,
1 1 1

Finally, sﬁbtract {35) from (61) using (62). The only terms which do not

cancel are those for which S = N. These terms are just {52).

Q. E. D.
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Using the definitions (49) and (51) of the integrated moments, the
definition (34) of the projection operator, and conservation_laws (2),
the identity {(52) becomes

Oy eesl n Ot---d.--.OLB o
d 1 n _ 1 i Tn i 1
——'QA | = I K _ - + J dx T...8x  F

(63).
for any integer n > 0. Here, the slash, /, through the index, o indicates

that this index is deleted from the list. For n = 0; 1, 2 equation (63)

reduces to

d _ : : . .
d e _,B «a o : . :
cat W TRy et f Sx= 3 » - (65)
4a o _ - BY « ay B o . B |
T QA KA o y + KA p ¥ + J §x~ 6x SA . (66)
By examining the proof of Theorem IV.1, one can convince oneself

that equations (63) contain all of the information about the integrated:
moments that can be obtained from the conservations laws.

For a given theory with a specific set of conservation laws, the pro-
cedure isr(a) to assume that only a finite number of the integrated moments

are non-negligible, (b) to expand the sources, 3A, in a power series about
X(t) and to substitute these expansions into equations (63), and {c) to
. ...0 o ...mnB

1 n 1

attempt to solve the resulting equations for 4 and KA pa

dt A B

Gy e e ol :
in terms of QA " and the background geometry. This would produce a

consistent set of equations of motion for evolving the non-negligible charge

and current moments from initial data,
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In the next section, I carry out this procedure for the energy-
momentum and angular-momentum conservation laws in a metric-Cartan
connection theory of gravity. In principle the same procedure should
work for the conservation of 'dilation current and hypermomentum when the
connection is not assumed to be metric-compatible, and should also work
for the conservation of electric gauge chargesrin any gauge theory. 1

have not carried out these computations.
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3. Propagation Equations in a Metrie-Cartan Connection Theory
In Section T1I1.5.¢ I derived conservation laws in the context of
metric-Cartan connection theories of gfavity with an 0.(3,1,R)-internal

tangent bundle. The energy-momentum conservation law is equation (III,5.81

[«1]

: - 8 1.0 B S .
oty = Qagty + 3R gps 87 ° (1)

and the'angular—momentum conservation law is equatidn'{iII.5.72_),

~ o ~ ] -~ ' )
v S]JA = tun - tau . : (2)
o v v v - ’

By introducing the tenscr densities

KA S | | )

the conservation laws become

Y& _ oy Y | Y 4,08 L LAy oBud |
BGI B (Aaﬁ { aG})z + 2 RdB 5'gr s _(5)

Yéa _ . [v8] [y 18a :
ads = 2% 4+ 2T 8a .S"S . (6)
The n-th integrated momentg of ZY8 ana S5 are

By-++B Y8 B B
i n - _ J Gx'l...éx n IJG

Ei...B v68o B B
y e =J5xl..;6xn$’Y6a : (8)

These are symmetric in Bl...Sn and zeroc if any of B ...Bn are zero, Further,

RS

L. B ovwiy
R “at

w ) is antisymmetric in v and §. Certain moments have additional
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names. The integrated energy-momentum is

P - [ £ (9
The integrated orbital angular-momentum is

AATIEY, CLIYL) L J (sx¥ 2%9- s 270y . (10)

The integrated spin angular—momentum:is

s7® = NY%° = JSY‘SC’. _ ' (11)

The integrated moments are to be regarded as tensors defined along

, the curve, X(t), and specified in the coordinate basis, BG. As such,

their indices are lowered using the coordinate components of the metric

at X(t), e.g.

‘Y

Ps = Ssylx(e) T | | (12)

Since gGY is not constant on E(t), this yvields a different result than

computing
o _ YO '

which could alternatively be used as the definition of the integrated energy-

momentum instead of (9). This ambiguity in the definition of the integrated

moments was pointed out by Madore and leads to ambiguities (discussed below)

in the interpretation of the evolution equations derived below. I feel these
. ., . . o ﬁ a -~ ~ ‘ . >
ambiguities could be removed by using Iﬁ and S s {(f and ¥ orthonormal, «
coordinate)rin‘definitions (7) through (11). However, I have.not yet redone
the calculation of the evolution equations. So the folleowing calculation is
, i . ., £YS Yoo,
done using the contravariant coordinate components of £~ and S in de-

finitions (7) through (11).
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" I now apply the derivation in the pfevious section to the comservation

laws (5) and (6). For the integrafed moments of"tY5 and Eﬂﬁu , eguation

(IV.2.63) becomes

B B ' |
1 n S od
+ [ 8% ~...0x% [(Aaa - { aé})t

B....8 ¥b6o n
_d__Nl a3 = Z (N
- i=1

g 8 |
+ j sx .. .ox R #7181 Lo ply

Bl...ﬂi...ﬁnyﬁsi

8] Ba
- S 3.

ls v oBad
RS D (14)

(15)

I will use equations (14) and (15) to find equations of motion of bodies

with and without orbital angular momentum and with and without spin angular

- momentum, in the context of both metric theories of gravity and metric-Cartan

connection theories of gravity; The most general of the eight cases is

presented in the following theorem. The other cases appear as corollaries in

the next section.
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Theorem IV.2:
In a metric-Cartan connection theory of” grav-ity, if the integrated
Bl' - BnYcS Byeo- Bnyda
moments, M ' withn > 2 and N with n > 1, are negligible

compared to MY5 » MEW6 and NY‘SG, then

y_1 Bazx v 6.1 Bog v 6
vp =3 L Ra85v+23 Rasav
1 Y B KA .1 8 Bav . ye
+ Aas er” eg” V. ST +35p N Ve"asa' s (16)
v L.Y(S + en! exﬁ v SK?\ = - 2 V[Yps]
fvy 8] ofv Iy §18v o :
+AaB o N + 2 A BaN o, > an
v6 _ 8 v . 4 1 .98y (8.v)o (¢ viov
M P+ i GL'+ L o ¥ )
1 8 ' o
T RS A LN IR G S AN o TG 1 Y
oBYS - F’Bu(']f Ny +.V(YL5)U _ p__(Yv Nﬁ)uv)’ (19)
NY(SOL = vC(- SY6 + pav NYG\’ , i (20)
where.
pY = pY + (¥ 3® LB - 2wy, (21)
af” " v .
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. Proof:

First notice that equation (20} follows immediately from the

definitibns (Iv.2.9), (11) and (IV,2.41) of vu, SYG and pav. Next

Y _ Y 2 Y Y fos 1
expand (Aaﬁ { aﬁ})’ RGB 5? and T Ba about X(t) as a power series in

qu:

: Y Y _ Y _ oy sl Y _ Y
(Aaa. { as})lx (s — 1 aﬁ})lX + 8x au(xa6 s g Frees
' | (22)
RuB &l RdB Gl + 8x- auRﬁB 6‘X+ eve s (23)
Y oY PN TR
Ml = T Bulx +6x" 3T Salx Foeen . (24)

When these expansions are substituted into equations (14) and (15), the

coefficients may be factored out of the integrals leaving the inte-

 gra1s in the form of integrated moments. Since they are negligible, all

integrated moménts.ei§e§t_ﬂy§,'MﬁYsrand ﬁyﬁu may be dropped. Also, the

evaluaﬁions at X(t) may be dropped.és'implicit. The only non-trivial

equatlons are (14} withn = 0,1,2 and {15) with n = 0,1. These are

"4 L yo = Y | Y 1a v _Bas Y Y uas
o (O, { }) S 4 7 Rg g N + (a A au{ aG})M
(25)
d Byo _ vB _ B yo .
- M =M'" - M+ Y _ Y Bad
ar -V Qus = Ugeh®, (26)
0= uPYS . \OYB _ 8 Bro _ 8 W, o @
d_ ¥So _ o [v81 . . Iy .6 ‘ (28)
TN =2u +2r N 16 .
(29)

0= NYGB _ B NYoo + 2 MB[Yﬁ] .
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The remainder of the proof consists of analyzing these equations in -

reverse order. Briefly:

*

(i) '-SOIVe_(ZQ) for MB[Tal in terms of psv NYav.

(1) Solve (28) for ML) in terms of s and of NV
(iii) Solve (27) for MO iy terns of 1Y¢ and pﬁ\J nev,
(iv) | Solve (26) for Mya in terms of_PY, iYarénd-va'Nyav{

and equate the antisymmetric part to M[YG]

found in (ii) to
obtain the equation of motion for LYa + SYG.
{+) Solve (25) for the equation of motion for p'.

I now proceed to analyze equations (25) through (29) in more detail.

First, using (20), equation (29) may be written as

Blvyél _ -1 B _yév '
M =-3P NTUU. (30)
Second, using (20) and
d _ o ' :
aw -V Ba , _ F3l)

equation {28) may be written as-

v8] _d_ gv8 | ooy sB8 L 8 gYB _, oIy 1By o

2 M dt : Ba Ba Ro. Y
_ LY 8 o R Iy 818y o s
=ex' e VS 20T N LIy (32)

~

(Recall that orthonormal indices are corrected with rKXa .

Third, cyclic permute ByS in (27) twice:

0= MYSB | BOY _ B o _ oy Ve (33)

0 = MOPY 4 YBS _ [y \SBo _ 8 yBo (34)
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Add (27) and (33) and subtract (34):

o =308 _ S8yl _ yrIBsl _ B (v8)o _ & [Bvlo _ v B8]0

(35)
Notice that in solving for MB(Yﬁ), all terms are known except M(YS)O,
To find an expression for M(yﬁ)o, use the idenfity,
2 M('YS)O =2 MY[SO] + 2 M(S{YD] + MYOG + Méoy’ (36)

which follows by writing out the symmetrizations. Combine this with the

equation obtained from (34) by setting B = 0:

2—'&("6)0 =2 MY[‘SO; + 2 wSlYol gy yfo0 (8 yvoo (37)
Then using
9 M[YO]O - MTO0 _ yoYO =.Myoo’ (38).
.eqﬁaﬁion {37) becomes
w80 _ yleol | slvol , v ,[6oTo , & [yolo (39)
Hence, equation (35) may be written as
MB(YG) - wY[B8] o S1BY1 | v M[BS]o L 8 ylBYle

4 Baivlsel 4 8ol | ¥ \Isolo 8 Tyolo,
- pBu(MY[“‘S] w0l oy y[wdlo 6 M[uﬂo)_ , 40)
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It is useful to notice that equation (27) may be rederived from (40) so

T that all of the information in (27) has been incorporated into (40). Now

—

substitute (30) into (39) and (40) to obtain

u(v8e _ (v 8o _ p(vv NG)ov, o -~ e

NI psu (_v(y 1S +'5(Yv N6)uv). (42)

The sum of (42) and (30) is equation (19).

T '8 :
Fourth, solve equation (26) for_My using (30), (41) and (42):

O T +f%E' Yo _ AaBYMGIaB] 4 {Yus}ﬁ5(as) -
=§3ﬂ+§E%LM;VWﬂh_pNvMM%h
I %-xaﬁY psv NEY 4 {Yas}pau(-fv“ L+ pév Yy, (43)
<m  ' This is equation (18). To find the quation of motion for LYa + SY5,

equate equation (32) to twice the antisymmetric part of (43):

Y 8 N [y Slgv a
e NS T ET g N ey

= 2 v{6 PY] + v

4 .8y vy &]
at L+ laB o, N_

-2 VIS {Y]B}(_ 'Va LBO + p_a

o v

| Y o _BS o BSv
+ { as}(- v L +p y N )

8

_ I I o Byv
= { GB}( v L +p N N

Iy p§] aBv

P L 8y
= v
2vopt v+ - o ¥

[y 81gv « ' - .
=2 {7 N o, ' (44)

P
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wherele'is defined by equation (21). Upon rearrangement, equation (44)
becomes (17).

Finally, the equation of motion for pY may be found by substituting

(20}, (30), (32), (42) and (43) into (25):

d .Y 8

a = Yyl o by o Sug v
dtP -Aaé (2 eE EX

R
v,S - T u N _p

{Yaéﬁvm PS +'%E * Léo-_ 0% Nﬁov)-+_£ 3 © 8 Nuvs

° d% (=" Y+ oM WPy

i W e _ B

8 Bav

5
Y o P, L E)

1 »
+ 2 Rd

_ Yy 2w 0dv
HORAs T N

(Bu{Taa})pue(' v 1% ¢ p“v A ' (45)

' Now it helps to know the answer and compute (using (21) and the definition

of ﬁﬁéyé in the first step, (31) in the second step and (45) in the third
step):
Y _ L. Bazx v & 1 Boas Yy &
VP ma L R sV T35 Rggv

a4 oY oY o . RO ¢ . Bov
It [Pf + { aB}(v LI ~p o v )]

oY B 8 I _Vo u vods
NRA LR S RGNS TCU AL e}

.8 JBa ey Y € _ 1 Bo g ¥ 8
v L (Ba{ 68} + { eu}{ 58}) 5 8 ‘RdB g v

-4 py _LgBag v 8
at P 3 5 Ras 5 v

. ‘Y ' @ 8.4 ,a B a _Bov
+ { aS}[v PY+ oF (v L pry, N )

B G, B .vo vod, (B (TR
_+ { uv}v v" L prg M) uv} v© L]

= Y M a .Ba o Bov, _ y o . Bu
(Bu. DLB}) v Fv L p, N ‘(BU{ Cu_B}_) v L



g

_\
N

™

kaBYQE es eXB vvsKl r“;v wBus oV )

_ {Yas}(%fkuva phé Nuvs + {B }pya Nvaé)

+ %'ﬁaBYG va N _-(au uBY)%'pu N

G Y e N
oaB v

=-% kaSY en eXB v SEX

+'% Pﬁv NgévtﬁﬂﬁYﬁlﬁ zaﬁ{YGS}P Z{Yea}{eaé}

4 aaAaBY +'{Yé6}xuse -2r° . Aer )

S R L U L AR

where the last step uses the identity,

s Y % Y o Yeo -
Be s " Pag s =8 Verugs T Velag

¥ Y e
tre Pas

acd

ey
Aa
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(46)

(47)

Equation (46) coincides with (16) 'and completes the proof of the theorem.

Q.E.D.
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4. Discussion and Special Cases
In this section, I discuss Theoren IV.2 and the special

cases when the orbital or spin angular momenta or both are negligible,
1 start bf comparing these results with the corresponding results for
metric theories, Since the metric theories are just the meﬁric—
connection theories in which the connection is metric—compatible and
torsion-free, I regain the equations for thé metric theories by setting
the torsion to zero in the eéuations for the metric-Cartan connection
theories, |

The metric theory results have been obtained and discussed by many
authors, including Mathisson [1937], Papapetrou [1951], Di#oﬁ [1970a,b,
1973, 1974], Madore [1966, 1969], and Bieglbock [1967]. I wish to
empha;ize that when these auﬁhors refer to "spin angular momentum,"
they do not mean the elementary'particlerspin. Rather, they mean the
total angular-momenfum, 3Y6 = f ( ox' iﬁo - Gxa ﬁxo_) V=g d3x s
computed using the metric energy—momentum-teﬁsor, §Y6. (Notice that
EYG = LTa + ST‘S , to lowest order in 8x'.) They denote the gquantity,
EYG, by SYa, whereas 1 resérve the symbol, SYG, for tﬁe integrated
elementary particle spin, Further, they talk about 375.33 if it were

just the orbital angular momentum, LYG, computed about the "center of

mass.” Since the above mentioned authors do not distinguish between

Y8, Yo

s , and LWS + SYS, they do not obtain the metric theory results

presented below which show that these three quantities behave identically
in the metric theories, On the other hand, the new metric theory
results may be obtained from the old results by replacing‘njYS by LYa,

s O Lys + S?G.
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I begin with the simplest situation in which the body has neither
spin nor orbital angular momentum; i.e. a gravitational monopole. In

the metric-Cartan connection.case we have:

Corollary IV,1:
Tn a metrie-Cartan connection theory of gravity, if the integrated
Bl...Bnyér Bl...Bnyﬁav . .
moments, M withn > 1 and N ~withn > 0, are negli-

gible compared to e s then

vE' =0, | B W

P =mn vx‘, 7 o |  . -_ - (2

w8 - pY 8 | o : (3)
where

n = s B B (4)

Further;_ the curve, X(t), is a geodesic of the Christoffel commeection

and
v = 0. . (5)
Froof:
Setting MBYG, NYGG, LY6 and SYa equal to zero in equations (IV.3.16-21), .

they become equations 1, (3) and
el oy, | (6)

Equation (6) says that PY and v' are linearly dependent. Since VY.# 0,

there exists a function, m(t), such that (2) is satisfied. Recall that
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is z ‘timelike unit vectgr; so that VYV# = 5l= +1, where the signatufe
of the metric is (8, -5, -S, -S). Hence, (4) is the square of (2),
Taking Ehe covariant derivative of (4) in the direction v and using

(1) yields (5). Finally, substituting (2) into (1) and using (S) gives,
Vv \;r.Y

Q.E.D.

The metric theory results are obtained by setting the torsion to Zero,

but the torsion does not appear in the equations of Corollary IV.1l. Hence:

| Corollary IV.2:

: : B,-v.B v8
In a metric theory of gravity, if the integrated moments, M 1 o

] Bl...Bnyaa 5
withn >1 and N with n > 0 , are negligible compared to M'°
then

Y _ : |
va. =0, : | (7
Ple=mvy’ s . - . : (8)
VAATIE L G - (9)
where
w2 =s pY 2, - _ ' . (10)

Further, the curve, X(t) , is a geodesic and

‘vm =0, ' o ' - an

Corollaries IV.1 and IV.2 show that in a metric-Cartan connection

theory of gravity, a body with no spin or orbital angular momentum does

-

= 0, which says that X(t) is a geodesic of the Christoffel connection.
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not feel the torsion and moves in the same manner (i.e. along a Christoffel
geodesic) as it would in a metric theory provided the metric is the same.
4 similar conclusion holds in the slightly more general situation when

the body- has orbital angular momentum but no spin angular momentum:

Cor*aZZarQ TV. 3:

In a metric-Cartan connection theory of 'grav'éty, 1if the integrated

BissaB_v6 B.esoB v .
',mome?zts,Ml n with n > 2 andN_l . n withnio, are

negligible compared to MY° and uPY® |, then

vy _liBuz y 6 ‘ |
va =3 F R.OtB sV o (12)
v 1Y = -2 Y pfl | o (13)
v .
M (Y 6) ( (Y 6)0) _ {(Y }p6) VU' LBIJ . (14)
apb B

where
Py =P 4+ {Yae}v“ Lo, (16)

Proof

Setting NYaa and SY‘3 equal to zero in equations (IV,3.16-21),

they become equatioms (12), (13), (15), (16), and

Mo =Sy s d Y 4y (s ALA WEL G VLW (17)

dt(Z puVL

Using (13), the antisymmetric part of (17) says that M[Ys] = (. Hence,

rhe symnetric part of (17) becomes (14).



:/T:-}

TN
A

189

As 'in Corollary IV.1 the equations in Corollary IV.3 contain no

torsion. Hence, the metric theory results are immediate:

Corollary IV.4:

In g metric theory of éravity, 1f the 1lafa1r‘:zs,"c;r:nczc7':er:Z.zrrzomenf;s,'I~IE}'”..31-D“S
with n > 2 and NBl..-BnYaa withn > 0, are ﬁegligible compared to u'¢
:and MBYG., then

v =g R ), o ay

VVLYts = -2 417 P, | | o (19)

' MTG =+ pY %E‘(V(Y L9y - {(Yae}pé>h v, (20)

MPYS. rrpo ka Lﬂ)u’ o B : (él)
where

p' = Y +”{Yas}vu LBO... S .' (22)

Corollaries IV.3 and-IV.é shoﬁ that in a metric-Cartan connection
théory of gravify, a body; whose integraﬁed elementary particle spin is
negligible, does not feel the torsion and propagates its momentum and
orbital angular momentum in the same manner as it would in a metric
theory provided the.metric is the same. Note that Corollaries IV.3 and |
Iv.4 éré éppropriate to photons for which the standard Lagrangiaq,

Loy = - F o, B, yields sﬁma = 0.
The situation changes drastically when the spin is noﬁ-zero. The

simplest situation is when the orbital angular momentum is zero:
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Corollary IV.5:

In a metric-Cartan conmection theory of gravity, if the integrated

Bl...Bnyé Bl...anéa )
morente, M withn > 1 and N with n > 1 , are neg-
Licible compared to MYS and NY60£ , then
Yy _1 Bas v & B Y . 8 _

VVP‘ T 5 5 RaB sV +P ABﬁr v o, : | -(23)

an¥ eia v s¥* = -2 v[Y PG], s A (24)

K v ) : : .

AL : | ' (25)

L s L o | (26)
Proof:

Setting MBYG and LTS eQualrto zero in equation (IV,3,19) vyields

- _ Bl Y5 _ (v Suv
0= - of (G N - oM WY, (27)
whose antisymmetric part on y and & is
of WY - o, (28)
S .
Hence, éetting I~46Y6,'LY(S and pBu NYGM equal to zero in equations
(Iv.3.16,17,18,20, and 21 ) yields equations (24), (25), (26), and
y _1 B& a Yy 6,1 Y o 8 N
VVP 5 S ROLB sV +5 AaB es eg VVS s (29)

which becomes (23) upon substitution of (24).
Q.E.D.

Setting the torsion to zero in the equations of Corollary IV.5

vields:
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Corallary Iv.6:
S . ‘ ) Bl. ..Bn'\{(s
Koo A In a metric theory of gravity, if the integrated moments, M
' B.o..B v8a
1

n

with n > 1 and N with n > 1 , are negligible compared to M7

end NYSG, then

Bo ~ ¥ )

. .
VP RaB sV o : _ | (30)

1
v =38
vstG = - 2 4lY p81, \ (31)

M'e = ey, | (32)

‘ Y8 o o g8, (33)

A comparison of Corollaries IV,4 and IV,.6 shows that in a metric

theory of gravity, the propagatioﬁ of the momentum and angular momentum

P

. of a boedy is independent of whether its angular momentum is all orbital
or all spin. However, in the presence of térsion, Corollary IV.3
shows that a body ﬁith only oxbital angular momeﬁtum will ignore the
torsion; whereas Corollary I§.5 shows that a body witﬂ only spin angular
momentum will feel the torsién in three ways:

(i) There is a spin-torsion coupling in equation (24) but no orbital-
torsion coupling in equation (13). The spin-torsion coupling may be
described by saying that in (24) thérspin propagates according to the

_ Cartan connection (rather than the Cﬁristoffel connection) with a torque

~2 v[-Y Ps]. Alternatively, rewriting (24) as

B LA e L L) O P LT B ' (34)
v Ba

( ‘ the spin propagates according to the Christoffel commection but has an

additional spin-torsion torque.
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(ii) The spin-curvature force in (23) couples the spin to the
Cartan curvature whereé§ thé orbital—curvature force in (12) couples
the orbital angular momentum to only'the Christoffel curvature;

 (iii) Equation (23) contains a momenpumrtorsion force not present
in equation (12). The presence of tﬁis force when and only when the
spin is nén-zero, is perplexing frdm-a pﬁysical point of view. |
Mathematically, it arises in equation (29) as a coupling between the
‘torsion and the derivative of the spin.-

It is informative to rewrite equation (23).using Cartan covariant
derivatives: |

é

YoptadlgBrg v 8.8y .
& VE =S R vV AR Qv ‘ (35)

In thié form‘equations (35) and (24) bear a close resémblance to the

_ original differential conservation laws tIV,3,1) , and (iv,3,2), So
perhaps the correct questions are: Why is a momentum-torsion force
missing in equation le)? Why do equations (12) and (13) involve
Christoffel covariant derivatives aﬁd Christoffel curvatures.rather ﬁhan
‘Cartan ones? However, after some manipulation, equations (12) and—(13)

may be rewritten as,

Yopk _ Ll 8% v 8 By 6,1 % & v

e ! v P° 5L RV +P Qls v+ F LV Vhes s (36)

o) EAL‘S v Lk:i 9 v[w 56] v[Y N G]LBG P A[Y LG]B, (37)

K AV 3] Ba

where
Bl =p’- Z1P2 )Y |
af

oY . (Y 1.8 .B80 1 .Ba, ¥ (38)
= P' + { aB}v L 5 L Aa{s .
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In this form there are Cartan covariant derivatives, orbital-Cartan
curvature forces, and momentum—to:sibn forces, but there are also
orbital-&erivativeuof—torsion forces and orbital-torsiomn t&rques.
Perhaps there is some other redefinition of the momentum and/or the

orbital or spin angular momenta which will make the equations of

Corollaries IV.3 and IV.5 look identical. I have not been able to

"find such a redefinition and do not know whether one exists. Hence in

their present form, I interpret Corollaries IV,3 and IV.5 as saying
that in the presence of torsion, spin and orbital angular momentum do
not behave in the same way.

 This brings us to the ﬁost complicated situation in Which the spin
and orbital angular momenta are both non-zero. The metric theory result

is obtained by setting the torsion to zero in Theorem IV, 2:
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Corollary IV.7:

) ) 7 B.+..B_¥8
In a metric theory of gravity, if the integrated moments, M 1 n
- B....R o :
»ith n > 2 and N_l ° with n > 1, are negligible compared to
w0, w0 W then
Yy _ 1, Ba Boa.~ ¥ 8 V | :
VPl =L+ s )RmB.,(,3 v, _ (39)
VV(LYG + SY‘S) =~ 2 v[Y P‘S], : S - (40)

6 _ 8.y, d 2 8, (v 8o (v . Sov
M—vP+dt(2L + v L -p N

- {Yés}psu(v? LB p“§ Ry, . (41)

'Mﬂ#é _ pBu( % T . T va RN (42)

Nyﬁa R Sya +.pav Nyav, (43)
where

pY =¥ {.YGB}(VG Lo _ p“v 8PV, | | (44)

quﬁiiary IV.7 generalizes Corollaries IV.4 and IV.6 |, showing
that in a metric theory of gravity, the propagation of the mﬁmen;um and
total angular momentum of a body is independent of what fractionAof the
total angular momentum in spin and what fraction is orbital. However,
Corollary IV.7 gives no information about how the total angular momen-
tun is divided between spin and orbital, nor about how‘this division
chznges with time. For that one must ipvestigaté the internal dynamics

of the body.
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In order to discuss the propagation of the momentum and angular
momentum of a body with both spin and orbital angular momenta moving in
a gravitétional field with torsion, one must investigate the full Theorem
Iv.2, There is a major difficulty with the propagation equations in

Theorem IV.2, which does not occur in Corollaries IV.1 through IV.7.

In the corollaries the propagation equations are deterministic once the
"background geometry is specified. - For example in Corollary IV.5 if pY

and SY(S are specified at an initial time then they are determined at all

times. Similarly for P' in Corollary IV.1, for P' and L'® in Corollary
Iv.3, and for PY and LYa + SYG in Corollary IV;7. In Coroliaries

IV.1 through IV.6 it is even possible to determine the auxilliary

Byd

variables MTG, M™'" and NYaq as appropriate. However, in Corollary IV.7

Byd

it is not possible to completely determine Mys, M and-NYaa because the

Ny&v

8 o . .
quantities L'° and p v are neither expressed in terms of PY and

8 . , . . .
L'Y + SYG nor given their own evolution equations. As discussed above,

Y8 4 g8 Y8

into LY° ana s¥¢

depends on the internal dynamics of the body. Presumably, the same is
8

true for the value of pav NT v.

ByS

In Theorem IV.2 not only are My6’ M and NYGG left undetermined,

but even the propagation equatioms, (IV.3.16) and (IV,3,17), are not

deterministic. It is not surprising that there are no separate equations
for iYS’ SYS and pa§ NYGv since that would require knowledge of the intermal
structure. However, that the prppagaﬁion equations do not determine PY

LY® + g¥8

and from initial data is surprising. The reasons'arg that (1)

the torsion does not couple symmetrically to LYé and SYS (only to SYa);

and (2) there are new couplings between the torsion and pav NYﬁv (which

vanished in all previous cases). The cobvious solution would be to find a

new combination of wvariables for which the propagation equations'are

v
’
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deterministic. I have not been able to do so and do not know whether
it is possible.

In attempting to make the propagation equations, (-IV.3.16_)- and
{IV.3,17), deterministic, it is instructive to rewrite them using all

Cartan covariant derivatives and Cartan curvatures:

8

Yo _ 1, 8a, Boua Y &, 58 Y
er V‘P == {(L"" 4+ S )RaB v +P QB-GV

[+

8

O N .
2(v L‘ pkN VY luvic , {45)

AA

I S A L S S ), 1)
K A v .

o, A[TBQ(LS]B & - §ol8v 0%y £ 2 [Y-(VM'*LBG _ p'fS] NBav)

v oB B, S
(46)
where
5 _pY _ L1 B2 Y
p =P 21- luB
I Y a Bo o _Bov ., 1 Bo, v
P +{GB} v L p, N ) -5 L J‘as . (47)

Alternatively, equations (IV,3.,16) and (IV.3.17) majr be rewritten using

all Christoffel covariant derivatives and Christoffel curvatures:

. vv—.ﬁ-y - %_ (LBu N Ssa)ﬁusya vﬁ.
+%_ (VG gbe pav NBW)VHQBG , (48)
VV(LY(S + .SYS) - -2 V[Y 53]
+ 2 A[YBG(S(S]S v 4 oIy %) - AGB[Y(%‘S]SB“ + pﬂv NPy,
| | | (49).
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where

oY ¥ ¢ ,Bo _ o Bov 1 .Ba Y
=P +{a8}(vL ‘va ) +58 )‘as . (50)

Neither of these forms of the propagation equations, (45) and (46) nor

-(48) and (49), are deterministic, but they demonstrate how a change in

the definition of the momentum can change the couplings between the

78

torsion and LYG, or p . Perhaps some other redefinition of -

o )
NV
v
the momentum and/or the orbital or spin angular momenta would make the
propagation equations deterministic. I have not been able to find such
a redefinition.

"But why are we allowed to redefine the momentum and angular momentum?

Because all we know about the general relativistic definitions of these

) quantities is that they must have the correct special relativistic and

Newtonian limits. For the momentum, all of the quantities PT, pY, pY

Eﬁ satisfy this criteria. Following equation (IV.3.12 ) I mentioned

two more definitions of the momentum. The first (suggested by Madore) is
N - Yo
PG J I& J gGY ', ) {51)
which differs from
_ Yo Yo o
Py = sy P T By J £, | (52)

because gaY is not constant. The second (halfway between PS and Pé) is
the orthonormal momentum

%a = J zﬁ". . . (53)
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Similar ambiguities exist in the definitions‘of the orbital and spin
angular momenta. I have a preférence for the definirions using Inu and
_S’ﬁc':1 » (I and 9 orthonormal, a coordinate) but I have.not had time to
‘work‘out.the.equétions. |

The remaining topic to-be diéﬁussed in this section islfhe choice

of the COQIdinéte systém, XQ, on the neighborhood, W. This entails the

choice of the spacelike foliation, I(t), the choice of the timelike curve

X(t), and the choice of the spacial coordinates,'ﬁxq, on each surface Z{t)

centered at X(t). -
In the metric theory case, Madore and Beiglbock proceed as follows:

For each point, y € W, and each future-directed timelike unit vector,

2% e TyW, they define a spacelike surface

‘Z(y, n) = {x e W : x is connected te y by a geodesic orthogonal to n},
(54)

and a momentum vector

P%(y, n) = JZ(y,n) 8 d3xB. (55)

Then for each y € W, they define ua(y)'s Tyw as the fixed ﬁoint of the map
a
n" — P%(y, n)/|2%y, n)|. (56)

{Existence follows from Brouwer's fixed-point theorem. Uniqueness is

assumed.) Using the abbreviations

Z(y) = I(y, u(y)), : , (57)

Py = My, uy)), (58)

+he definition of ua(y) says that Pa(y) is parallel to ua(y) and orthogoﬁal

zo Z(y). Next on each surface, I(y), they introduce normal coordinates,
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o :
éx , centered at y, and define the angular momentum about y as

of _ [a B]# 3 . ‘ .
L™ (y) = 2 Jz(y) §x- £ d xY. (59)

The center of mass curve (center of motion curve according to Beiglbock)

is then defined as
x =1y ew : 1By Py(y) = 0k (60)

1 R '
That X is a unique C -timelike curve in int W follows from Brouwer's
B

e : ] . o .
fixed-point theorem and certain assumptions about t . Let t be a future-

directed affine parameter on X and abbreviate

B(®) = D), - e
S = @), (62)
o = PR, | | (63)
) = ey, o (64)

Finally, they choose x> as a generaliied Fermi coordinate system based on
the curve X(t) and the timelike vector field ua(t). In that case, Pa(t)

and Las(t)'coincide with the momentum and orbital angular momentum used -

 in the rest.of this'chépter. However, because of the special choice of the

curve, X{t), they_aléo satisfy

PP (1) = m(t) u*(t), : L (6s)

ey Py(t) = 0. o (66)
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In the xa coordinate bésis, equations (65) and (66) say

Pa(t) = m(t).ua =‘5 m(t)N(t)Gz, | . | (67)

L*°(t) = o, - - o (88)

waich shbw;thaﬁ p* coiﬁcides with P* in Corollary IV.A gnd simplifies
in Corollary IV.7.

It is obvious that the same constrﬁction also works in the metric-
Cartan connection fheory case; Howeyer,‘it is in no sense’unique.
Alternatively, one could define Z(y, n) using Cartan geodesics instead
of Christoffel geédesics; or one could use the Cartan conﬁection instead
of the Christoffel connection to define the nofmal é@qrdinates, 6%, and
the genéralized Fermi cobrdinates, x. In that case tﬂe curve X(t), may
change but equations (65) and (66) remaiﬁ valid. _Whiqh cﬁordinate system
is better, I do not know. ,Pgrhaps another choice of coordinates could be
found which would eliminate the indeterminacies in the propagation
equations of Theorem IV.Z. In any case, the results in Corollaries IVfl.

through IV.7 and Theorem IV.2 are true for any choice of coordinates.
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5. " Experiments
a. Stanford-Schiff Gyroscope Experiment
My original purpose for investigating the equations of
motion of a rotating body in metric-connection theories was to see

whether the Schiff gyroscope experiment, presently being designed at

Stanford, could detect the presence of a torsion field. The answer is

"no. This follows because the gyroscope has no net elementary particle

spin. Hence, Corollaries IV.3 and IV,4 show that the gyroscopé will

not feel the torsion and will move exactly as it would in a metric théory.

b. Magnetized Gyroscope
In short, a gyroscope will feel the torsion only if its
total elementary particle sbin is non-zero; i.e. it is magnetized. The-
appropriate propagation equations would be an electromaghetic generali-

zation of equations (IV,3,16 ) and (IV,3.17 ) of Theorem IV,2, However,

' to get a rough estimate of the importance of the torsion, I will ignore

the electromagnetic interactions. Also, to eliminate the indeterminacies

in equations (IV,3.16 ) and (IV.3.17 ) I will assume that

a Nyav

v

=0, | | (1)

and that the spin and orbital angular momenta are proportional with a

constant ratio. Thus I define
AN RO S - - (2)

and assume

8 =3, L' = (l—G)JYG. ' C(3)
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After some manipulation, equations (IV.3.16 )} and (IV.3.17 ) become

1 - N
v =3 JBa[(l—c)RaBYS + cRaBYG - 20(1-0)) " x_esﬁlv‘s-
. B v & : -
+oP P, | | ; W
o OB  lap, 8l - yla B8] § :
?VJ = =2 v P + 20 J A ve V- | . (3)

To obtain an estimate for ¢, I assume that the gyroscope is an iron
sphere of radius, R, rotating with angular velocity, w; and that one
electron per atom is aligned. Since the density and atomic weight of

iron are p = 7.86g/cm3 and A = 56g/mole, the mass of the éyroscope is

43 R .3 - P |
M=37R p-= (cm) 33 g, . (6)

and the total number of aligned electrons is

= . - (R 3 23 ‘

Ne = NA ﬁ/A = (cm) 3.7 x 10 ) (7
where NA = 6,02 x 1023/mole is Avogadro's number. Hence the total spin
is

1. R .3 -4 g cm2

g = 3 ol Ne = (C_m) 1.9 x lQ sec  ° ¢:))

while the total orbital angular moﬁentum is
_2 2 R.5 W g cm
L=%3 MR w-= (cm) ¢ -1) 13 sec )
_ sec .

Therefore,

9 _ s = (EE)Z (_S_e'g:i) .3_ 5 % 10_5 : - (10)

l1-¢ L 'R w ) ’

cm, 2 sec-l -5
g =) (—) 1.5 x10 .7 , . (11)

R w
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Returning to equation (5), we see that the torsion induced torque,

2 o grie 8l 6
¥

2 JY[G{Blyﬁ}vﬁ, if the defect, ABYS , is 1/o ~ 105 times as large as the

Christoffel symbols, {8 3. This seems unlikely. A similar examination

e
shows that in equation (4) the torsion induced forces are again smaller
by a factor of ¢ than the Christoffel interactions. Thus it seems un-

‘likely that even a magnetized gyroscope could detect a torsion field.

€. Neutron Star
A second system with both spin and orbital angular

momentum is a neutron star. The following calculation again shows

that the spin angular momentum is much smaller than the orbital angular -

momentuﬁ.

| Let M., M@ and m denote the masses of the neutron star, the sun -
and a neutron. Then the total number of neutroms is
M

= (ﬂiﬁ 1.2 x 10

57

(12)

M*
N=—
m

Assuming the best case that all of the neutron spins are aligned, the
total spin is

M 2

1 = (2 29 g cm’
§=5HN (Mo) R (13)

On the otherhand, the total orbital angular momentum is

M 2
. 2 2 R w b4 g cm
s R o= G Qo) Cop 8210 - (8
® ‘sec _ )
Therefore?
s _ s _ 10km sec * -16
1o " L1° ¢ R ) ( . )y 7.5 % 10 . (15)

wnich is even worse than the corresponding quantity for a magnetized

-

gvroscope. .

v , will only be as large as the Christoffel corrections, .
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‘d. Magnet
Examining equatiéns (8, (9), and (10) shows that the

best way to increase ¢ is to set w = 0; i.e. to stop the rotatiomn.

But then the magﬁetized gyroscope is no longer a gyroscope but only a

magnet. The appropriate propagation equations are (IV.4.23 ) and
(IV.4.24 ) of Corollary IV.5. These are to be compared with. equations

(IV.4,12 ) and (IV.4.13 ) of Corollary IV.3,-' which are appropriate to

.the Stanford gyroscope.

The Stanford gyroscope is a qugrtz.sphere of density p =_2.2 g/cm?,
radius R = 2.0 cm., angular velocity w = 4007 rad/sec and hence orbital
angular moemntum L % 1.5 x 105 g szlsec. To have an equal spin angular
nmeomentum in a spherical, non~rotating, iron magnet‘the radius would have
to be R = 920 cm. Even then the torsion would have to be comparable to

the Christoffel symhols in order to be détectable.

e. -Polariéed Particle Beams and He3 Superfluid
Two other sysééms with spin angular momentum but no
orbitél angular momentum are (i) a beam of polarized elementary pafticles
(protons, electroms, neutroms, etc.) and (ii) a He3 superfluid. I have
not yet aﬁélyzed the propagation of momentum and spin polarizatiqn in

such quantum mechanical systems.



